
Trilby Sample Firmware - API

Version 1.02

20 April 2016

Licensing Information

Copyright (c) 2005-2016 Kinetic Avionics Ltd
www.kinetic.co.uk

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in the
Software without restriction, including without limitation the rights to use, copy,
modify, merge, publish, distribute, sublicense, and/or sell copies of the Software,
and to permit persons to whom the Software is furnished to do so, subject to the
following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

Introduction

This document describes the Application Programming Interface used in the
Trilby HAT Sample Firmware. It assumes that the reader is familiar with the
principles and terminology of computer communications and programming.

Control Interfaces

There are 3 interfaces for sending API commands to configure the I/O and the
tuner, all using pins on the Raspberry Pi connector. For an example (using the
SPI interface) written in C see the source code for the ttune utility.

SPI interface

Send a sequence of SPI bytes with CS0 = 0 to read or write a block of one or more
consecutive registers.
Byte 0 = command (0x00 for register write, 0x01 for register read)
Byte 1 = high byte of register address to write or read (currently always 0x00)

http://www.kinetic.co.uk/

Byte 2 = low byte of first register address to write or read
Byte 3 onwards = register data to write (data = don’t care if reading)

I2C slave interface

The firmware will respond to an I2C slave address of 44 hex, i.e. the
command/address byte is 0x88 for write and 0x89 for read.
To write one or more consecutive firmware registers, send the I2C address byte,
then the first 2-byte register address (high byte then low byte), then one or
more bytes of data. To read register(s), send the register address without any
data, and then read one or more bytes.

Serial interface (UART)

This can be used for example with a PC and a USB serial cable (FTDI manufacture
a suitable 3.3 volt cable). Configured for115.2 k Baud 8 bits no parity. The packet
format is:
Byte 0 = DLE character (0x10)
Byte 1 = STX character (0x02)
Byte 2 = Packet type (Command) byte (0x90 for register write, 0x91 for register
read)
Byte 3 = Sequence number or packet tag. This byte is included in the reply packet
for identification.
Byte 4 = Low byte of first register address to be written or read
Byte 5 = High byte of first register address to be written or read (currently
always 0x00)
Byte 6 = Low byte of number of bytes to be written or read
Byte 7 = High byte of number of bytes to be written or read (currently always
0x00)
Byte 8 = First data byte.
:
Byte 8+(n-1) = Last data byte
Byte n+8 = DLE character (0x10)
Byte n+9 = ETX character (0x03)
Byte n+10 = High byte of CRC
Byte n+11= Low byte of CRC
Notes:
N is the number of bytes of consecutive register data (1 to 255)
DLE stuffing is employed. Any DLE characters (0x10) present in bytes 2 to 8+(n-
1) or in the CRC are sent doubled up, in other words the sequence DLE DLE is
sent.
The CRC is based on the CCITT-16 polynomial and incudes bytes 2 through 8+(n-
1). The CRC is calculated on the data prior to DLE stuffing.
A register read command (0x91) will elicit a reply packet of type 0x92 containing
the register data in the data bytes.
A protocol error detected by the firmware will elicit a reply packet of type 0x20.

Firmware Internal Registers
The above control interfaces allow you to read and write control registers within
the firmware. Here is a list of these registers:

Port Control Registers

Registers 0x00 to 0x05
Output pin level (1 for logic high, 0 for logic low). Bit 0 of register 0x00
corresponds to I/O pin 0, Bit 7 of register 0x05 is I/O bit 47. The register bits
corresponding to input pins or pins configured for special function are ignored.
These registers default to 0x00.

Registers 0x10 to 0x15
Data direction control bits for the 48 I/O pins (0 = output, 1 = input). This bit is
ignored for pins configured for special function. These registers default to 0x00.

Registers 0x20 to 0x25
Function control bits for the 48 I/O pins (0 = special function of pin enabled, 1 =
treat as general purpose I/O). If a bit is set to 0 the corresponding I/O bit
becomes an input if it does not have an actual special function such as LED’s, SPI,
I2C or UART. These registers default to 0x00.

Registers 0x30 to 0x35
Read-only registers for reading back the input value of the I/O pins.

Tuning registers

Register 0x40
Control register.
Bit 0 is 1 for AM demodulation, 0 for FM and also by default controls the Yellow
LED
Bit 1 is 1 for WFM, 0 for narrow band and also controls the Green LED,
Bit 2 is the antenna switch (0 for VHF/UHF antenna, 1 for HF antenna) and also
controls the Orange LED.

Register 0xF0 to 0xF3
Tuner frequency in kHz (low byte first)

Register 0xF4
Tuner command. Having set the tuner frequency using the registers above, write
0xa0 to this register to initiate retuning.

Register 0xF4
Squelch value in dB – this is the RSSI value below which the audio is muted. Set
to 0 for no squelch.

Register 0xF5
Mute – set bit 7 to 1 to mute the audio output.

Register 0xF8
Read only register – relative signal strength (RSSI) value in dB.
Register 0xF9

Read only register – total tuner AGC value in dB (higher number = less RF+IF
gain).
Register 0xFA
Read only register – tuner RF AGC gain byte – see tuner data sheet.
Register 0xFB
Read only register – tuner IF AGC gain byte – see tuner data sheet.

Audio output registers

Allowing digital audio data to be read by the Raspberry Pi (audio is mono for the
moment)

Register 0x50, 0x51- read only - n 16-bit PCM samples can be read using these
addresses. The low byte is read from address 0x50 and then the high byte from
address 0x51 (read 2*n bytes i.e. 24000 bytes for 0.25 seconds of audio at
48ksps)
As a special case, after reading from address 0x51 using SPI the address pointer
is reset to 0x50 instead of auto-incrementing the address, so that many samples
can be read in a single SPI operation.

Register 0x54 - read only reg - num samples available in buffer (low byte)
Register 0x55 - read only reg - num samples available in buffer (high byte)
Register 0x56 - sample speed - set this to 0x01 for 48ksps, 0x02 for 24ksps, 0x03
for 16 ksps
Register 0x57 - set to 0x80 to enable audio out

Version number registers

Register 0x60 and 0x61 - read only registers returning the major and minor
version numbers of the firmware, for example 0x01, 0x02 for v1.02

List of Input/Output Pins

Bit Description Rpi

header
Expansion
Pin

FPGA
Pin

Default
Dir

0 Red LED E18 Output
1 Yellow LED F18 Output
2 Green LED G16 Output
3 Orange LED H16 Output
4 Tuner SDA C7 Input
5 Tuner SCL C6 Input
6 HF switch D8 Output
7 (Spare) Output
8 RTC I2C SDA 3 A3 Input
9 RTC I2C SCL 5 B3 Input

10 RTC INT 7 E2 Input
11 Serial RX 8 G3 Input
12 Serial TX 10 H3 Output
13 11 D5 Input
14 12 G5 Input
15 SPI MOSI 19 C3 Input
16 SPI MISO 21 D3 Output
17 22 E4 Input
18 SPI SCLK 23 F4 Input
19 SPI CS0 24 E1 Input
20 SPI CS1 26 D2 Input
21 29 E3 Input
22 31 E5 Input
23 32 D1 Input
24 33 F5 Input
25 35 A2 Input
26 36 C1 Input
27 37 B1 Input
28 38 C2 Input
29 40 B2 Input
30 3 E12 Input
31 4 H18 Input
32 5 A12 Input
33 6 H17 Input
34 7 A13 Input
35 8 J17 Input
36 9 B13 Input
37 10 J16 Input
38 11 C13 Input
39 12 E19 Input
40 13 D13 Input
41 14 E20 Input
42 15 E13 Input
43 16 F19 Input
44 17 A14 Input

45 18 F20 Input
46 19 C14 Input
47 21 D14 Input

Raspberry Pi is a trademark of the Raspberry Pi Foundation.

